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ELECTROMAGNETIC AND TEMPERATURE FIELDS IN DIRECT
RESISTANU .. HEATING OF COMPOUND AXISYMMETRIC BODIES

Yu. I. Nyashin and V. M. Tver’e UDC 537.8:536

A nonstationary coupled problem of thermoelectrodynamics is formulated for resistance heat-
ing of dissimilar ferro- and paramagnetic bodies by an alternating current. An iterative al-
gorithm for solving this problem by finite-difference methods is proposed. Temperature and
electromagnetic-field distributions are obtained for the processes of direct resistance heating
both in air and in the region of the molding tool.

Introduction. Direct resistance heating of metals and alloys have been widely used in industry, in
particular, in the manufacture of anchor heads for the reinforcement of building structures by heating in air,
heating of powder materials in a container for their sintering to a specified level of porosity, etc. The process
of resistance heating is easily automated and combined (for the contact method of heating) with the process
of deformation of a billet. A progressive technology related to resistance heating is electric upsetting, which
allows one to produce details of complex shape with high accuracy [1-3]. Electric upsetting is performed in
two steps. Initially, the billet is heated by an alternating current of commercial frequency f = 50 Hz. After
that, the current is disconnected and the billet is deformed to a specified configuration. A diagram of direct
resistance heating of a billet for electric upsetting is shown in Fig. 1. Because of the short duration of the
second stage of electric upsetting, the temperature field in the billet is formed at the stage of direct resistance
heating [4].

At the second stage of electric upsetting, an important condition for implementation of the molding
process is precise local héating onlv of the region of the billet that undergoes deformation, taking into
account the plastic properties of the treated material. For the majority of materials, the maximum degree of
deformation accumulated before failure is in a narrow range of temperature € above the Curie temperature
6¢c [5]. The temperature distribution and value in the heated region should be predetermined, taking into
account the configuration of the finished article and the limitations due to the thermal strength of the tool.
Only satisfaction of these conditions makes it possible to produce details of required shape'without Hash and
bur and with a precisely filled die [2, 4].

The existing models describing the resistance heating stage ignore the coupling of the electromagnetic
and temperature fields in the volume of bodics in contact, use the solution of the classical problems of penetra-
tion of a plane electromagnetic wave into a half-space or the problem of electromagnetic-field distribution in
an infinite conducting cylinder, and. in many cases, explain the physical picture of heating only qualitatively
[1, 6-8]. We note that the skin effect in ferromagnetic materials is significant cven at low frequencies [9, 10].
Deformation of a billet without failure under the temperature—force limitations due to the strength of the
tool requires knowledge not only of the volume-average temperature (the so-called “forging” temperature)
but also the distributions of electromagnetic and temperature fields and the history of their formation. In
the present work, we develop a mathematical model of direct resistance heating for a system of axisymmetric
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Fig. 1. Diagram of direct resistance heating of a billet for electric
upsetting: billet (1), punches (2 and 5), removable die (3), and
die holder (4): Oz is the symmetry axis, L is the length of the
billet, I, is the length of the upset part of the billet, [, = L — [,
and Rp, Ra, Ry, and R, are the radii of the billet, the upset part,
the removable die, and the die holder, respectively.

ferro- and paramagnetic dissimilar bodies taking into account the skin effect and the temperature dependences
of electromagnetic properties [electric conductivity o (or resistivity p = 1/0) and relative permeability u,|
and thermal properties (thermal conductivity A, specific heat ¢, and density ) of materials. We note that
the sharp peaks in the distribution of the specific heat ¢ and the inflections of the parameters A, 7, and p
near the Curie point 6 are due to a phase change with loss of magnetic properties in the neighborhood of
this point (. = 1 at § > 6c). At 8 < 8¢, i, practically does not depend on temperature and decreases
rapidly to unity in a narrow temperature region containing the point ¢ [11].

1. Formulation of the Problem. We use Maxwell equations in a fixed reference system for high-
conducting bodics ignoring bias currents and, hence, the dielectric properties of materials, which are preserved
up to frequency w = 27 f = 10° sec™!. In the region “billet~tool” for axisymmetric bodies, these equations
can be reduced to the equation

Vxp()V x H= —%lfz, (1.1)

which, together with the relation for magnetically soft materials,
B = pop(0.|H|)H, (1.2)

and the conditions of equality of the tangential components of the electromagnetic-field strength vectors in

passage through the boundary between dissimilar media,

Hyr = H»;, E\; = Ey,, (13)
has a unique solution [12]. In (1.1)-(1.3), H = H(r,¢,z.t) and E = E(r.¢, z,t) are the magnetic- and
electric-field strength vectors, respectively, up = 47 x 107" H/m is the permeability of vacuum, B is the
magnetic-induction vector, 7, ¢, and z are cylindrical coordinates, and ¢ is time. Then, the density of heat
sources ¢, can be defined using Maxwell equations and Ohm’s law:

VxH=j, Jj=oc(8)E. (1.4)
Under the Joule-Lenz law, ¢, = p(6)j*. where 7 = j(r,¢. z.t) is the current-density vector.

The current-continuity equation as a consequence of the first of Egs. (1.4) leads to the condition of
equality of the normal components of the current density on the boundaries of dissimilar regions 1 and 2:

Jin = Jon- (L.5)
The air surrounding the region “billet-tool” is considered in a vacuum approximation, where j = 0.

Obviously, on the boundaries of the contact “conductor-vacuum,” relation (1.5) is converted to the conditions
of “nonpenetration” of the current through the surface of the conductor:
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jn =0. (16)

The scalar and vector potentials of the electromagnetic field. which are frequently used to simplify
the Maxwell equations, lead in this case to a coupled system of nonlinear differential equations for the
vector-potential component. Therefore, we formulate the boundary-value problem of electrodynamics for the
magnetic-field strength H [Eq. (1.1)] with relations (1.2), (1.3), (1.5), and (1.6).

Let S = St U S, be a region consisting of open regions of the tool Sy (die and die holder) and
the billet S5,. The boundary I' = ey U [ine of the region $* = S UT includes the external boundary
Text = Uy UL U, which consists of the boundary of contact of the billet with the punch (movable and
fixed) I'y,, the symmetry axis I', (axis Oz), and the boundary of contact of the billet and the tool with air
(in the vacuum approximation) I',. The boundaries Ty are the internal boundaries of contact of the billet
with the die and the die with the die holder for S. We consider the possibility of simplifying Eq. (1.1).

Writing the Maxwell equations in a fixed coordinate system (r.¢. z), we note that in the case of axial
symumetry of the field, the strengths H and E are superpositions of the strengths of two fields:

H ={0,H,,0} + {H,,0,H.}, E={0.E,.0} +{E,.0,E:},

and the magnetic field with the component H, determines values of F, and E. independently of the field
with the component E,, which determines the components H,. and H. [13].

We assume that the current I is supplied at the ends of the billet parallel to the Oz axis and n is the
outer unit normal vector to Tey;. Then, for the field {H,,0, H.}. the tangential component n x H = 0 on
I'y. Obviously, at the ends of the billet and on the symmetry axis. H, = 0. Hence, n x H = 0 everywhere on
Text. Using the Poynting theorem in integral form, we can show that the electromagnetic-field energy decays
in the region with the specified boundary conditions.

Thus, for the steady stage of resistance heating there is no field with the components {H,,0, H.} and
{0. E..0}. Therefore, the electromagnetic field in the region S is determined by the transverse-magnetic field
{0, H,.0} or an electric-type field.

Since in the region there is no heterogeneity along the azimuthal coordinate, we assume that the
components of the electromagnetic-field strengths do not depend on 2. Therefore, for the region S, Eq. (1.1)
can be written as a scalar equation for the component H,.

To determine the boundary conditions, we consider the first of Eqs. (1.4) outside the region S* in the
vacuum approximation, i.e., V. x H = 0. Then, H_, does not depend on = and the magnetic field is defined
by the relation

H,=¢/r,

where ¢ is a constant that is evaluated with allowance for (1.3), (1.5) and (1.6) from the Ampere law, which
is an integral analog of Eq. (1.4), written for S*.

Taking into account that 2w /w <« T (I is the characteristic time of change in temperature in the
system of bodies), we write the magnetic strength as

H,= Hy(r, z,t) exp (—iwt),

where i* = —1 and H_(r, z.t) is the complex oscillation amplitude. which is slowly varving with time ?.
Similarly, the current Iy and the magnetic induction B, are written as sinusoidal functions of time. This
representation B, is reasonable since the higher harmonics that arise for the magnetic induction because of
the nonlincarity of relation (1.2) are insignificant and, for steel. they account for not more than 5% of the
first harmonic [9]. Then. without changing the designations and ignoring the termn containing dy, /ot (it is
different from zero only in the neighborhood of the Curie point {14]). we obtain a coupled boundary-value
problem of thermoelectrodynamics in the region “billet-tool.” which is written in operator form as follows.
For problem M{H, 6] = 0,
%(”—(f—) ;% (ng)) + %(p(a) af“’) +iwpopr (8. Hy)H, =0 in S

«
-
<
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the boundary conditions are

Ry, m=R;. 0<2<,

I
H,=0 for r=0, H’*?SE%OE’ a={ Ry, r=Ry, I <z<ly,
Ry, r=Ry,. 1 <z<L.

I
H’\ozgorf("‘)y flry=4 L Ri<r<BRy z=l; and Ro<r< Ry, z=1,
1, RI < T < R4 =
on the boundary ey and
OHy, OH>,
Hl¢ - HQ&,’)v pl(g) (t)n - 2( ) an

on the boundary I'j,.
For problem T8, H] = 0,

o9 14 3] )
c(0)1(6) 5 =~ 5—( NOS) + (M) D) 44 1 s
The initial conditions are 8 = 6(r, z,t) and 9(7, z, 0) Bo(r, z). The boundary conditions are
00 , x
5 =0 =0 -\#) 5; = (8 = 6%) — Cqp, on T,UTy,

on the boundary Ty and

o0

b= M) S =) 22

on the boundary Ty. Here aeg is the effective heat-removnl coefﬁ(‘,leut that takes into account heat convection
(¢ = 1) on I';, and convective and radiative heat exchange (( = 0) on T,.. #* is the ambient temperature, and
qn is a heat source that takes into account the transient contact resistance {3} on I'y.
The volume density of the heat sources is defined by
2918 p,
=" r or ?)
We note that the evolution of the electromagnetic field is determined by the thermal conditions and the
amplitude of the field depends on time as on a parameter.

Direct resistance heating can be implemented not only for a constant value of the current I, but also
for a constant value of the voltage U,. Then, the boundary conditions for H, are nonstationary, i.e., for the
magnetic-field strength, Iy = I(t), where I(t) is the slowly varying amplitude of the current.

The problem of controlling the technological process of resistance heating can be solved using a sim-
plified formulation of the problem in which the presence of a die is allowed for by heat exchange with the
tool under Newton’s law [15, 16].

2. Algorithms of Solution and Numerical Implementation. For joint solution of the problems
on the introduced grid of values of time, calculations are conducted by an iterative scheme of the form

MIH.64 V=0, TB.H®D =0 (s=12...). (2.1)

)

In each time step, we calculate the approximation H () for the temperature 8¢~V and then solve the problem
T[0. H*)] = 0, which determines the next approximation of the temperature field ). The iterative process
(2.1) is interrupted when the required accuracy ||6¢) — 8¢=1|| < ¢ is reached. This procedure divides the
nonlinearly coupled problems in each step [17] and allows one to find the fields H, E, and 6 by independent
algorithms.

The formulated problem is characterized by discontinuities of the thermal and electrophysical properties
on the boundaries of dissimilar regions. Therefore, the region S* is divided by a nonuniform coupled grid
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along r and z. Roots of the Chebyshev polynomial are used as nodal values, and the boundary nodes belong
to the boundary Cey in the problem A/[H.6] = 0. In the problem of determining the temperature field,
the boundary Tey is in the middle between the extreme nodes of the grid. In the problem of determining
H, the nodes belong to the boundary Ty, and in the problem T[9. H] = 0, this boundary is located in
the middle between the nodes. Such discretization of the region provides for the second order of accuracy in
approximating the boundary conditions of heat exchange, and on the internal boundaries, it does not require
formulation of separate boundary conditions [18, 19].

Each of the indicated problems reduces to a systern of algebraic equations by constructing a conservative
difference scheme for the original differential problem [18, 19]. The time when the temperature reaches the
Curie point is determined during solution.

The problem M[H,8(5~Y)] = 0 for a complex-valued equation of the type of the Helmholtz equation
is solved in each time step by the Seidel method. The problem T8, H®)] = 0 is solved by a locally one-
dimensional method using a purely implicit, absolutely stable, difference scheme {18]. The relation 1,.(6, |H|)
is approximated by the universal magnetization curve using the basic values of y, and H, determined from
experimental data for each of the materials [20].

All experituental data on the properties of the materials and calculated values of H, are interpolated
by a rational spline of the third order, which ensures continuity up to the second derivative inclusively.

In each time step, calculations for U, = const using the Poynting theorem [8, 12] give values of the
resistance r* and the reactance x*, which, besides being integral characteristics of the energy expended
in heating and magnetic-field variation, are used to calculate the electric circuit of the resistance heating
facility. Hence, from the expression I = U./Vr*2 + z*2, we can calculate the total current in the billet,
which is iteratively calculated in the solution of the problem AJ[H. H(S’”] = 0 in this step. In calculations
for I, = const. the voltage depends on time and is defined by U = I, vi** 4+ 2*2. An additional iterative
procedure in the last case is not required.

The test calculations performed indicate that the mathematical model is correct and appropriate for
the algorithms used and that the adopted simplifying hypotheses are valid [15, 16].

3. Discussion of Results. The detected regularities of the formation of the temperature field in
time and volume for direct resistance heating of billets of various standard sizes show that the temperature
difference along the radius of the upset part is minor and the temperature on the billet surface here is higher
than that on the axis up to the Curie point. after which the temperature on the axis is somewhat higher
than on the surface. The temperature distribution along the length is more complicated (high gradients
at the contact with the punch, in particular, at the entrance to the die). Figure 2 shows the temperature
distribution at various times 7 (7 = 10 sec is the end of heating) in a 30Kh13 ferromagnetic steel billet
12.8 mm in diameter and 37 mm long at I, = 3600 A.

The temperature distribution described above is typical of all standard sizes of billets, and it is prac-
tically impossible to produce a uniform temperature field of the upset part of the billet. This is explained by
the considerable nonuniformity in the density of the heat sources due to the strongly nonuniform distribution
of the current density j. along the radius of the billet, which takes place up to the attainment of the Curie
point in the upset region and during the entire heating process in the remaining region near the contact with
the tool (Fig. 3). There is a characteristic “lateral displacement™ of the current density, which was described
for the first time in [6]. The component j, is also distributed nonuniformly, but its value is an order of
magnitude lower than that of j..

Generally. the mutual effect of the electromagnetic and temperature fields corresponds to the induction
heating process described in [6-8]. The situation is, however, complicated by fact that the billet has two
characteristic regions: the upset part and the part located in the die. In the part of the billet that is not
upset, only the initial stage of formation of the electromagnetic and temperature fields is observed, which is
“retarded” by intense heat exchange with the tool.

Figure 4 shows the distributions of the resistance and reactance over the heating time, which charac-
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Fig. 2. Temperature distribution along the length of the billet on the axis (r = 0) (curves I) and on the
surface (r = Ry) (curves II) for 7 =1 (1), 2 (2), and 10 sec (3).

Fig. 3. Distribution of the effective longitudinal component of the current density (j.) along the length
of the billet on the axis (r = 0) (curves [) and on the surface (r = R,) (curves II) for 7 = 1 (1), 6 (2),

and 10 sec (3).
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Fig. 4. Distribution of the resistance (r*) and reactance (z*) of the billet over the heating time.

Fig. 5. Effective voltage across the billet versus heating time for I, = 3600 A.

terize the power of heating of the billet and the magnetic field, respectively. The curves show that r* > z*
for all t and a fast increase in these parameters is observed up to the time ¢ = t(, which corresponds to
the Curie point. After that, one observes inflection of the curves of r*(¢) and x*(t) and a certain increase
in the resistance due to an increase in p(#). This behavior is typical of ferromagnetic materials and is more
pronounced with strengthening of the surface effect beginning from d = 16 mm. For nonmagnetic materials,
a monotonic increase in r* and x* is observed.

An important characteristic of the process is the voltage across the billet U, which varies with time in
the heating regime I. = const and is determined from the obtained relations r*(¢) and 2*(¢). The etfective
voltage across the billet U, versus time is shown in Fig. 5. The characteristic point of inflection at the moment
tc corresponds to the Curie temperature of the surface layers of the upset part of the billet. At ¢ > 7 sec,
most of the upset part becomes nonmagnetic, the voltage drop ceases, and a small increase in U, is observed
(the increase in r* is more considerable than the decrease in x*).

Thus, knowledge of the important electrotechnical characteristics of the billet (resistances, reactance,
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Fig. 6. Temperature distribution along the length of
the die in the sections for r = Ry = 10.8 mm (curves
I) and r = B3 = 13 mm (curves II); 7 =1 (1), 6 (2),
and 10 sec (3).

voltage, and their time dependences) gives necessary information for calculating the electric circuit of the
direct resistance heating facility [2, 3].

In industrial production. the electric circuits of electric upsetting automatic control units are designed
so that heating is performed in the regime U, = const, which does not require expensive current regulators.
Numerical solution of the problem of direct resistance heating is more conveniently performed for the regime
I. = const, since for the total time-dependent current in the billet, an additional iterative procedure is required
in solving the problem A[[H.6] = 0. This leads to additional computing costs, which are unacceptable in
solving optimal control problems for resistance heating, where a calculation of a great number of versions
is required. Therefore, we propose a procedure of conversion from the regime [, = const to the regime
U, = const based on the equality of thermnal energies in the heating interval from 0 to t; under the condition
of invariance of the dependence r*(#), which ensures “recurrence” of the history of resistance heating. Then,

[N ty .

2 [ . e dr

I({/I (T)dT‘Ue/,.*(T)« {3.1)
0 0

where the dependence 7*(7) and the heating time t; are known from calculations for the regime /. = const.
The quantity U, in expression (3.1) is corrected using the power coefficient of the facility [8], whose occurrence
is due to the voltage component that overcomes the self-induction e.m.f. The calculations of direct resistance
heating show the validity of this method of conversion [16].

Figure 6 shows the temperature-field distribution in two characteristic sections (see Fig. 1) of a hard-
alloy die from VK-20 alloy. The die holder of radius Ry = 42.5 mm was made of 4Kh4M2VFS tool steel. A
billet of 30Kh13 steel with a radius of R, = 6.5 mm and length of 39 mm was heated. The Curie temperature
is 980°C for VK-20 alloy and 820°C for 4Kh4M2VES and 30Kh13 steels.

During the entire heating process. the temperature of the die remains higher than the temperature of
the billet region that is not upset. The maximum temperature is near the outer surface of the die and is
shifted to the depth of the tool. The temperature on the surface of the die holder does not exceed 80°C.

The current density and the heat sources are inversely proportional to the resistivities. On the surface
of contact of the billet and the die. the power of heat sources varies jumpwise [21]. Since the resistivity of
VK-20 alloy is about three times lower than the resistivity of the billet before it reaches the Curie point,
the current “flows™ into the die and passes basically through it and not through the undeformed part of the
billet. The thermal activity Xc¢~ of VK-20 alloy is 30% higher than the thermal activity of the materials
of the billet and the die holder. This leads to redistribution of the heat flows [21] from the region of contact
of the billet and the die holder into the die. The temperature on the surface of the die holder is low because
it is cooled with water.
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Conclusions. Thus, the formulated nonstationary coupled initial-boundary-value problem of ther-

moelectrodynamics for the system of axisymmetric ferro- and paramagnetic dissimilar bodies taking into
account the skin effect and the temperature dependences of both the electromagnetic and thermal properties
of materials and the designed algorithms of solution make it possible to establish the regularities of formation
of the electromagnetic and temperature fields in the region “billet-tool.” This allows one to formulate and
solve the problem of optimal control of this process (see, for example, [22]).
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